Climate change and vector-borne zoonoses: insights from a cross-sectional study on perceptions, knowledge, and practices in Portugal

Main Article Content

Daniel Pontes
https://orcid.org/0009-0007-8741-0027
Ana Patrícia Lopes
https://orcid.org/0000-0002-8182-5674
Teresa Letra Mateus
https://orcid.org/0000-0003-1236-3012
Filipa Loureiro
https://orcid.org/0000-0002-5370-5333
Paulo Afonso
https://orcid.org/0000-0001-6390-0194
Luís Cardoso
https://orcid.org/0000-0002-6145-7560
Ana Cláudia Coelho
https://orcid.org/0000-0002-7196-4179

Abstract

Climate change is regarded as a critical issue for public health. Each year, its impact on human and animal health becomes increasingly evident as the risk of zoonosis transmission is exacerbated by extreme weather events and the movement of vectors into new areas. These changes are causing extensive consequences, affecting human health, the environment, and the global economy. Therefore, collective action is considered essential to mitigate the effects of climate change and safeguard public health for future generations. This study investigates the perceptions, knowledge, and practices of Portuguese citizens concerning vector-borne zoonoses and their connection to climate change.
A descriptive cross-sectional study was carried out by distributing a survey to 147 individuals.
The findings indicated that, on average, 80% of participants were aware of zoonoses, with the least recognised vector-borne zoonoses identified as the chikungunya virus and West Nile virus. Approximately 93% of the study population reported that they perceived temperatures in the warmer months have risen each year, with more than half of the participants noting an increase in the prevalence of vectors in the country during these months in recent years. Additionally, the results demonstrated that the majority of participants, about 93%, believed that veterinarians provided inadequate information regarding vector-borne zoonoses. The findings further revealed that the sampled population was unprepared for the realities increasingly faced in Europe and Portugal, with only 42% of participants reporting the use of preventive measures, such as repellents, against vectors. Consequently, there is a need for enhanced education and awareness campaigns, as well as a more proactive role from veterinarians in disseminating information and prevention strategies.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pontes, D., Lopes, A. P., Mateus, T. L., Loureiro, F., Afonso, P., Cardoso, L., & Coelho, A. C. (2025). Climate change and vector-borne zoonoses: insights from a cross-sectional study on perceptions, knowledge, and practices in Portugal. Veterinarski Glasnik, 79(2), 101–119. https://doi.org/10.2298/VETGL250301014P
Section
Full research article

References

Adepoju O. A., Afinowi O. A., Tauheed A. M., Danazumi A. U., Dibba L. B. S., Balogun J. B., Flore G., Saidu U., Ibrahim B., Balogun O. O., Balogun E. O. 2023. Multisectoral perspectives on global warming and vector-borne diseases: A focus on Southern Europe. Current Tropical Medicine Reports, 10:47–70. https://doi.org/10.1007/s40475-023-00283-y

Afonso P., Coelho A. C., Quintas H., Cardoso L. 2023. Leishmania seroprevalence in dogs: Comparing shelter and domestic communities. Animals, 13(14):2352. https://doi.org/10.3390/ani13142352

Afonso P., Quintas H., Vieira A. F., Pinto E., Matos M., Soares A. S., Cardoso L., Coelho A. C. 2024. Furry hosts and fungal guests: Investigating dermatophyte carriage in shelter and clinic cats and dogs of Northern Portugal. Veterinarski Glasnik, 78(1):28–46. https://doi.org/10.2298/VETGL240130006A

Afonso P., Lopes A. P., Quintas H., Cardoso L., Coelho A. C. 2024a. Ehrlichia canis and Rickettsia conorii infections in shelter dogs: Seropositivity and implications for public health. Pathogens, 13(2):129. https://doi.org/10.3390/pathogens13020129

Brady O. J., Gething P. W., Bhatt S., Messina J. P., Brownstein J. S., Hoen A. G., Moyes C. L., Farlow A. W., Scott T. W., Hay S. I. 2012. Refining the global spatial limits of Dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases, 6:e1760. https://doi.org/10.1371/journal.pntd.0001760

Carlson C. J., Albery G. F., Merow C., et al. 2023. Climate change increases cross-species viral transmission risk. Nature, 607(7919):555–562. https://doi.org/10.1038/s41586-022-04788-w

Chala B., Hamde F. 2021. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review. Frontiers in Public Health, 9:715759. https://doi.org/10.3389/fpubh.2021.715759

Chalghaf B., Chemkhi J., Mayala B., Harrabi M., Benie G. B., Michael E., Ben Salah A. 2018. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: Impact of climate change. Parasites & Vectors, 11:461. https://doi.org/10.1186/s13071-018-3019-x

do Vale B., Lopes A. P., Fontes M. d. C., Silvestre M., Cardoso L., Coelho A. C. 2021. A cross-sectional study of knowledge on ownership, zoonoses and practices among pet owners in northern Portugal. Animals, 11(12):3543. https://doi.org/10.3390/ani11123543

El-Sayed A., Kamel M. 2020. Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 27:22336–22352. https://doi.org/10.1007/s11356-020-08896-w

European Centre for Disease Prevention and Control. 2023. Epidemiological update: West Nile virus transmission season in Europe, 2022. https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2022

European Environment Agency (EEA). 2017. Climate change, impacts and vulnerability in Europe 2016. https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016

European Environment Agency (EEA). 2020. Trends and projections in Europe 2020. https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2020

Gunda R., Chimbari M. J., Shamu S., Sartorius B., Mukaratirwa S. 2017. Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005–2015. Malaria Journal, 16:393. https://doi.org/10.1186/s12936-017-2036-0

Hajian-Tilaki K. 2011. Sample size estimation in epidemiologic studies. Caspian Journal of Internal Medicine, 2(4):289–298.

Howard C. R., Fletcher N. F. 2012. Emerging virus diseases: Can we ever expect the unexpected? Emerging Microbes & Infections, 1:e46. https://doi.org/10.1038/emi.2012.47

Instituto Português do Mar e da Atmosfera (IPMA). 2022. IPMA – Mapas. https://www.ipma.pt/pt/oclima/monitorizacao/

Karim S., Kumar D., Budachetri K. 2021. Recent advances in understanding tick and Rickettsiae interactions. Parasite Immunology, 43:e12830. https://doi.org/10.1111/pim.12830

Kinnunen P. M., Huttunen L., Nieminen T., Gaddnas H., Huovilainen A., Peltoniemi O. A. T., et al. 2022. Veterinary professionals at risk of zoonoses: A cross-sectional survey on knowledge, attitudes and practices in Finland. Zoonoses and Public Health, 69(5):456–464. https://doi.org/10.1111/zph.12934

Li Y., Wang B., Saechang O. 2022. Is female a more pro-environmental gender? Evidence from China. International Journal of Environmental Research and Public Health, 19:8002. https://doi.org/10.3390/ijerph19138002

MacConnachie K., Tishkowski K. 2023. Boutonneuse fever. In StatPearls. StatPearls Publishing

Maia C., Altet L., Serrano L., Cristóvão J. M., Tabar M. D., Francino O., Cardoso L., Campino L., Roura X. 2016. Molecular detection of Leishmania infantum, filariae and Wolbachia spp. in dogs from southern Portugal. Parasites & Vectors, 9:170. https://doi.org/10.1186/s13071-016-1452-2

Martinez G. S., Linares C., Ayuso A., Kendrovski V., Boeckmann M., Diaz J. 2019. Heat-health action plans in Europe: Challenges ahead and how to tackle them. Environmental Research, 176:108548. https://doi.org/10.1016/j.envres.2019.108548

Mateus T. L., Moreira S., Maia R. L. 2023. Unawareness about vector-borne diseases among citizens as a health risk consequence of climate change—A case study on leishmaniosis in northwest Portugal. In: Leal Filho W., Vidal D. G. (eds.), Climate change and health hazards, pp. 197–208. Springer. https://doi.org/10.1007/978-3-031-26592-1_10

Parente J., Pereira M. G., Amraoui M., Fischer E. M. 2018. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of the Total Environment, 631–632:534–549. https://doi.org/10.1016/j.scitotenv.2018.03.044

Paz S. 2020. Climate change impacts on vector-borne diseases in Europe: Risks, predictions and actions. The Lancet Regional Health – Europe, 1:100017. https://doi.org/10.1016/j.lanepe.2020.100017

Rocklöv J., Dubrow R. 2020. Climate change: An enduring challenge for vector-borne disease prevention and control. Nature Immunology, 21:479–483. https://doi.org/10.1038/s41590-020-0648-y

Rupasinghe R., Chomel B. B., Martínez-López B. 2022. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Tropica, 226:106225. https://doi.org/10.1016/j.actatropica.2021.106225

Ryan S. J., Carlson C. J., Mordecai E. A., Johnson L. R. 2019. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases, 13(3):e0007213. https://doi.org/10.1371/journal.pntd.0007213

Semenza J. C., Menne B. 2009. Climate change and infectious diseases in Europe. The Lancet Infectious Diseases, 9(6):365–375. https://doi.org/10.1016/S1473-3099(09)70104-5

Semenza J. C., Paz S. 2021. Climate change and infectious disease in Europe: Impact, projection and adaptation. The Lancet Regional Health – Europe, 9:100230. https://doi.org/10.1016/j.lanepe.2021.100230

Semenza J. C., Suk J. E. 2018. Vector-borne diseases and climate change: A European perspective. FEMS Microbiology Letters, 365:fnx244. https://doi.org/10.1093/femsle/fnx244

Spence N., Imrie A., Mudie L., Robertson C. 2022. Public perception of zoonotic disease risk and willingness to report symptoms: A discrete choice experiment. BMJ Open, 12(8):e059439. https://doi.org/10.1136/bmjopen-2021-059439

Ssempiira J., Kissa J., Nambuusi B., Mukooyo E., Opigo J., Makumbi F., Kasasa S., Vounatsou P. 2018. Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiology & Control, 3:e00070. https://doi.org/10.1016/j.parepi.2018.e00070

Talapko J., Škrlec I., Alebić T., Jukić M., Včev A. 2019. Malaria: The past and the present. Microorganisms, 7:179. https://doi.org/10.3390/microorganisms7060179

Tham H.-W., Balasubramaniam V., Ooi M. K., Chew M.-F. 2018. Viral determinants and vector competence of Zika virus transmission. Frontiers in Microbiology, 9:1040. https://doi.org/10.3389/fmicb.2018.01040

Tilston N., Skelly C., Weinstein P. 2009. Pan-European Chikungunya surveillance: Designing risk stratified surveillance zones. International Journal of Health Geographics, 8:61. https://doi.org/10.1186/1476-072X-8-61

Ulrich L., Wernike K., Hoffmann D., Mettenleiter T. C., Beer M. 2023. Animal health and One Health: The role of veterinary medicine in the control of zoonotic pathogens. Pathogens, 12(6):785. https://doi.org/10.3390/pathogens12060785

World Health Organization (WHO). 2014. A global brief on vector-borne diseases (WHO/DCO/WHD/2014.1). https://apps.who.int/iris/handle/10665/111008

World Health Organization (WHO). 2015. West Nile virus – Portugal. https://www.who.int/emergencies/disease-outbreak-news/item/17-september-2015-wnv-en

World Health Organization (WHO). 2022. Chikungunya fact sheet. https://www.who.int/news-room/fact-sheets/detail/chikungunya

World Health Organization (WHO). 2023. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Most read articles by the same author(s)